

LUT UNIVERSITY STRATEGY 2030 • TRAILBLAZERS – Science with a Purpose

SYSTEM

AIR Turning emissions into opportunities

BUSINESS AND SOCIETY Sustainable renewal of business and industry

WATER Refining

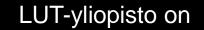
sidestreams

into value

ENERGY

Transition to a

carbon-neutral


world

KesTech - Roundtable

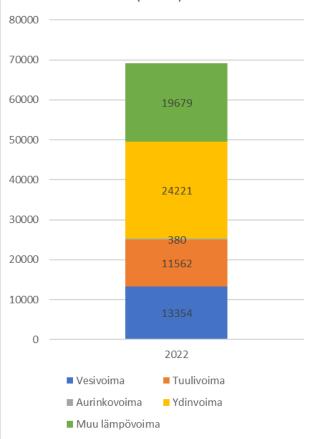
Petteri Laaksonen, D.Sc., Research Director

petteri.laaksonen@lut.fi

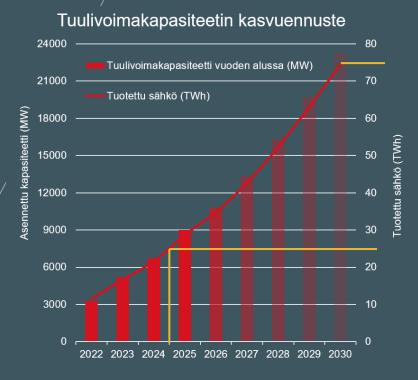
WORLD'S 9.TH

University – SDG 13.

Times Higher Education Impact Rankings 2022 arvioi yliopistojen sosiaalista ja taloudellista vaikuttavuutta YK:n kestävän kehityksen tavoitteiden edistämisen kautta.



GREEN ELECTRIFICATION & P2X ECONOMY


Electricity production in Finland

Sähkön tuotanto tuotantomuodoittain 2022 (GWh)

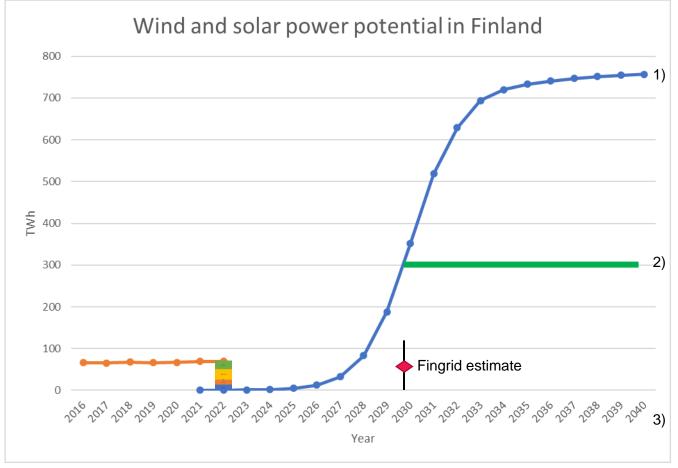
Electricity production in 2022 69 TWh. Nuclear is the biggest source of electricity.

Uusiutuvan energian kasvuvauhti kiihtyy

Fingrid Best estimate skenaario H1/2023

Wind power will pass nuclear 2024 In 2023 wind power exceeds exsiting production

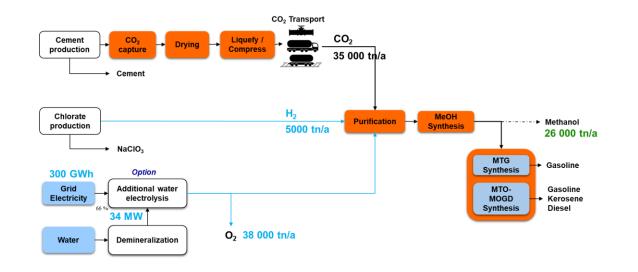
Aurinkovoimakapasiteetin kasvuennuste 8000 Aurinkovoimakapasiteetti vuoden alussa (MW) 7000 (MM) — Tuotettu sähkö (TWh) 6000 5000 4000 3000 2000 1000 2022 2023 2024 2025 2026 2027 2028 2029 2030

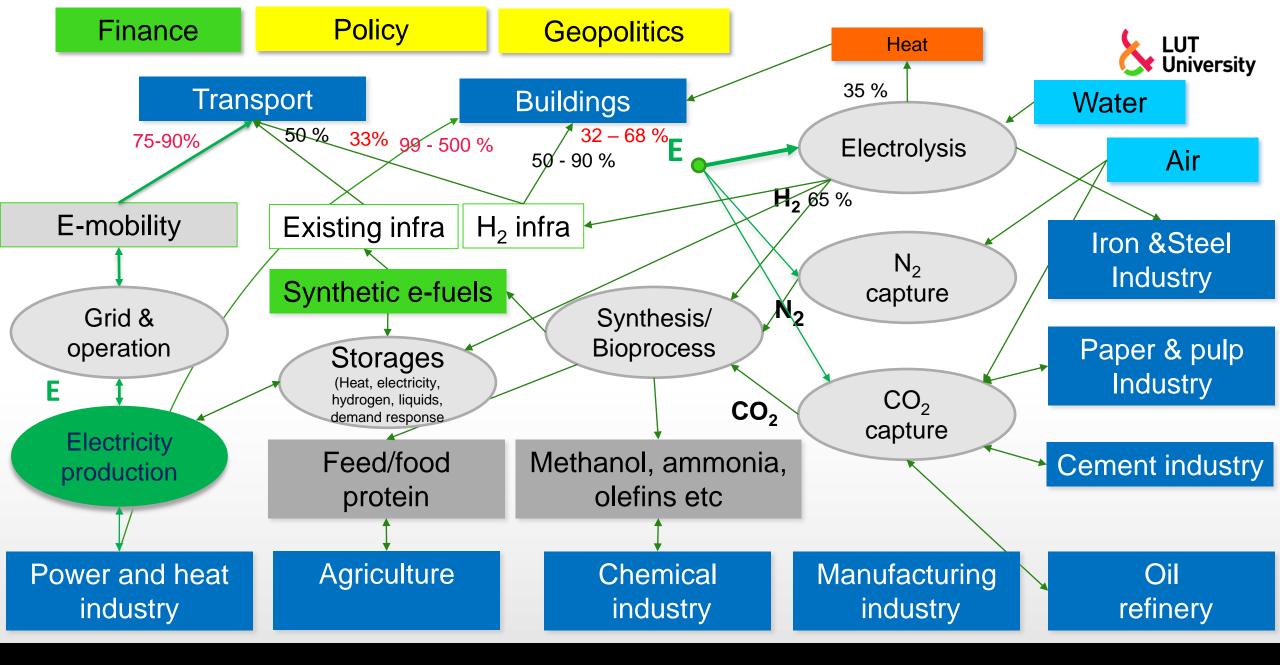

FINGRID

Solar power will support the renewable production will be approximately +10% in 2030

LUT University

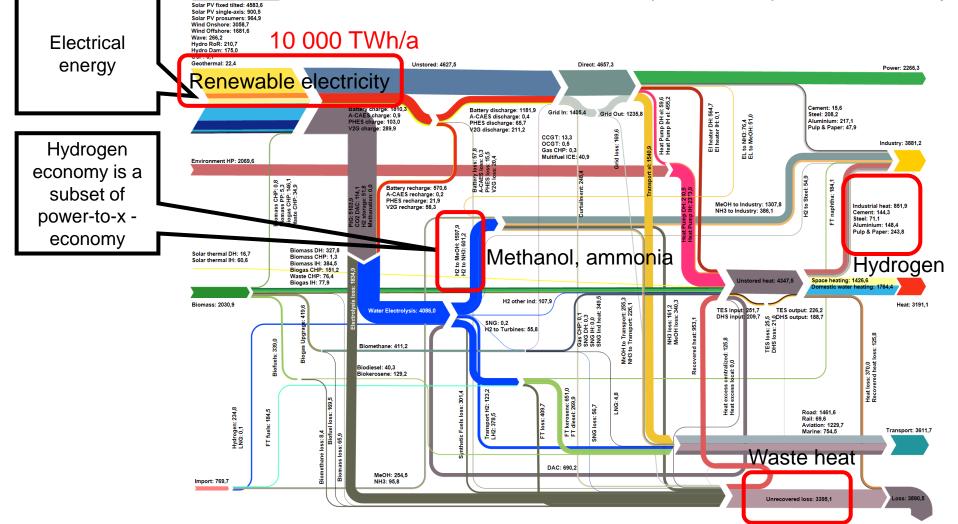
POTENTIAL OF GREEN ELECTRICITY PRODUCTION

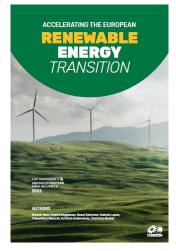

Investments in energy production approximately 400 BEUR


- Based on Actual Grid Connection Request in Finland. Source: Energy transmission infrastructure as enabler of hydrogen economy and clean energy system. Fingrid and Gasgrid Finland's joint project, 15 March 2022. Updated 10.1.2023, Mikko Heikkilä, Fingrid 200 GW+.
- 2) Fingrid estimates 300 TWh wind production to Finnish system (Mikko Heikkilä, Bryssels, 9/2022)
- 3) Timeline not real estimate, just referential.

P2X

From electricity & hydrogen to products

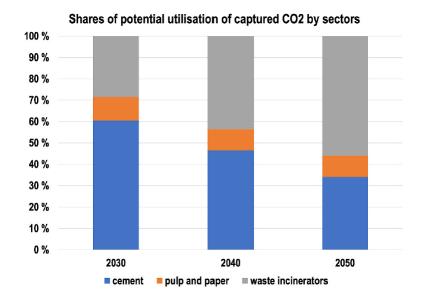


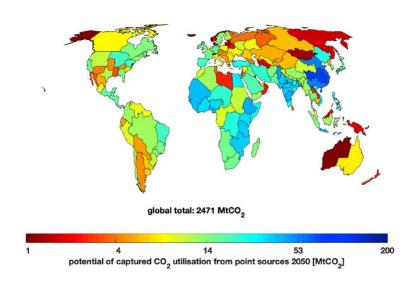


Energy system transition in Europe

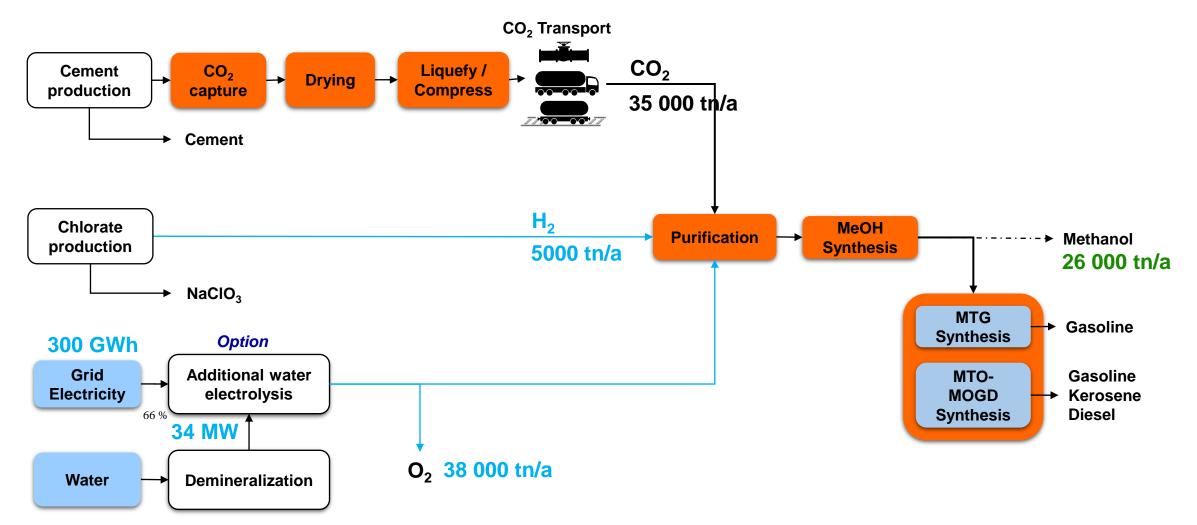
Europe - RES-2040 2050

- Zero CO₂ emission low-cost energy system is based on electricity
- Core characteristic of energy in future: Power-to-X Economy
 - Primary energy supply from renewable electricity: mainly solar PV and wind power
 - Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.
 - Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel; power-to-hydrogen-to-X


LUT University


Greens/EFA, 2022

GLOBAL DEMAND FOR CO₂


In 2030, the total potential of captured CO2 from point sources that could be utilised is 2112 Mt annually (T. Galimova et al.(2022))

Production of Carbon Neutral Fuels - P2X

St1 P2Methanol Production

St1 is planning a synthetic methanol pilot plant in Lappeenranta, Finland

RELEASE 04.10.22

The energy company St1 is planning the first synthetic methanol plant in Finland next to the Finnsementti factory at the Ihalainen industrial site in Lappeenranta. The Ministry of Economic Affairs and Employment has granted a funding of EUR 35.4 million to St1's Power-to-Methanol Lappeenranta project, which aims to produce renewable synthetic methanol to replace fossil fuels used in maritime and road transport. St1's goal in the commercial-scale pilot project is to develop a replicable and scalable synthetic methanol production concept.

Finnsementti factory

CASE LARGE PULP MILL – METHANOL PRODUCTION

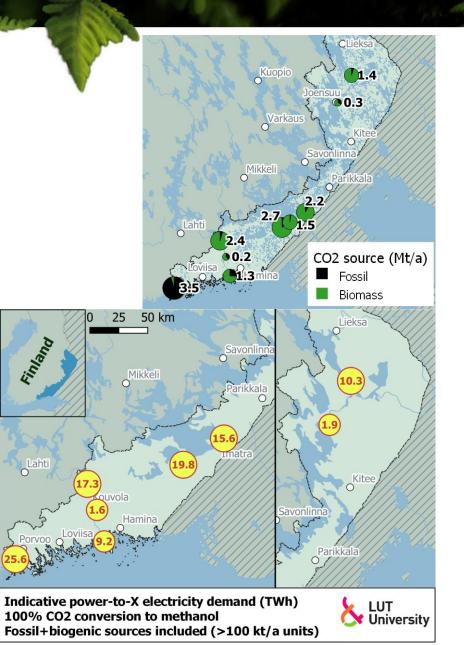
- Annual biobased CO2 emissions 2,1 Mt (2017)
- Chemical scrubbing (amine, 40 - 140 C)
 - CO2 capture efficiency 98%
 - >> CO2 capture purity >99%
- >> Electrolyser 2 GW
- >> Annual electricity 17 TWh
- Green Methanol production 1,5 Mt/a
- >> Value á 1000 EUR/tn
- \rightarrow 1,5 Mrd EUR/a

Utilization time	e 7500 h/a	1											
Electricity	2260,15 MW _e	Elect	rical efficiency	66 %		Carbondioxide	276 996	kg/h					
Elektrolysis	2000,00 MW _e	Annu	al energy	16951	GWh		564 269	Nm ³					
Auxiliaries	260,00 MW _e						6 648	tCO₀/d					
Own use	0,15 MW _e						2 077 000	tCO ₂ /a					
	Water 340,8 m ³	/h											
	340,2 t/h										Methanol	201 673 k	g/h
												141 067 N	Im ³
	•											4 840 152 k	g/d
Elektrolysis			Annual tn	285 483		Methanolsynthesis						1 513 000 to	CH₃OH/a
Electricity	2000,00 MW _e		Hydrogen	38064	kg/h	Efficiency, Heat		65,0 %					
Efficiency	75,0 %			423 201	Nm ³						Higher HV**	1288,47 _N	IW _{CH3OH}
			•	285 483	tH ₂ /a	CO ₂ (g)	+ 3 H ₂ (g) –	→ CH ₃ OH(g)			Lower HV**	1114,80 _N	IW _{CH3OH}
			Higher HV	1500,0	-	_		100,0 %			Efficiency		cibon
$\Delta_{\rm r} {\rm H}$	286 kJ/mol		Lower HV	1268,8	MW _h	Δ _r H		-50	kJ/mol		Electrolysis	55,7 %	ó
		_									Plant	49,3 %	ó
	-												
Oxygen	302 098 kg/h		Annual tn	#######				Water	113,39				
	211 601 Nm ³							₽	######	kg/h			
Cooling re	g. 500,0 MV	V _{+b}				Cooling reg.	119,52	•					
.	J,.	- 11				Methanation		MWth					
						Steam condensation		MW _{th}					
Sold Heat	450 MV	V _{th}				Sold Heat	107,56						
Temperature	70 °C					Temperature	325						
Efficiency	90 %					Efficiency	90 %						

SOUTH - EAST FINLAND HYDROGEN VALLEY

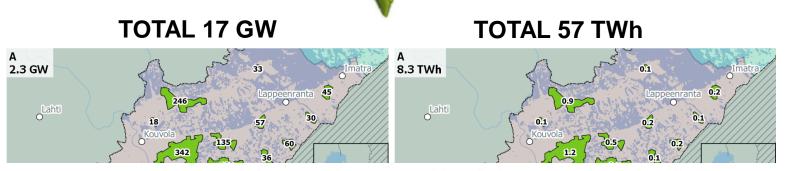
Petteri Laaksonen

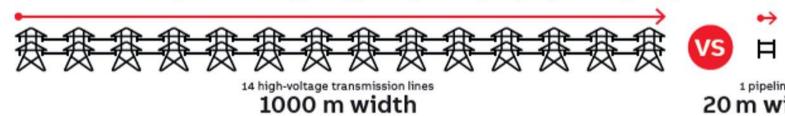
Research Director, School of Energy Systems, LUT University

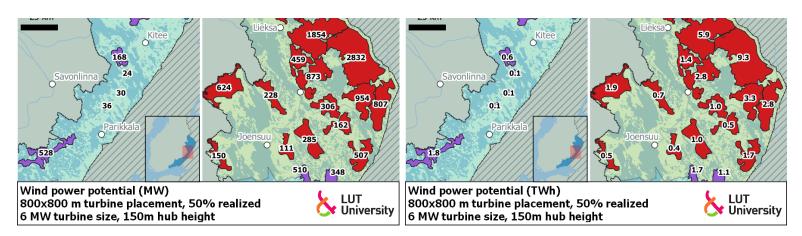


BIOGENIC CO₂ SOURCES

Mainly biobased emissions (10.8 Mt/a), located in the southern part of the area


Scenario	Base			
CO ₂ emission facility type	(All)	(All)	Pulp and paper	(All)
CO ₂ type	Total	Biogenic	Biogenic	Biogenic
Portion of CO ₂ utilized	100 %	100 %	100 %	20 %
CO ₂ utilized (Mt)	15.5	10.8	9.5	2.2
Methanol production (Mt)	11.3	7.8	6.9	1.6
Hydrogen demand (Mt)	2.1	1.5	1.3	0.3
Electrolyser electricity demand (TWh)	112	78	69	16




WINDPOWER POTENTIAL

- Scenario approximately 50 % will be built
- Mainly located in the northern part of the area
- Energy transfer volume of 78 TWh between north and south is huge

Moving 42GW of energy using power grid vs. hydrogen gas through a pipeline

NORDIC COUNTRIES ELECTRICITY SUPERPOWERS

NORDIC ELECTRICITY SUPERPOWERS

- Total renewable electricity potential in Finland exceeds 1000 TWh, representing 10% of the electricity demand in EU.
- Combined with Sweden and Norway, the potential could be 3500 4500 TWh, covering 35- 45%% of the European electricity demand of 10 000 TWh
- New P2X investments will be located neat the electricity production. Investments in synthesis of methanol, ammonia and other P2X products exceed investments in electricity generation.
- Total investments exceed 1000 BUER in Nordic countries.

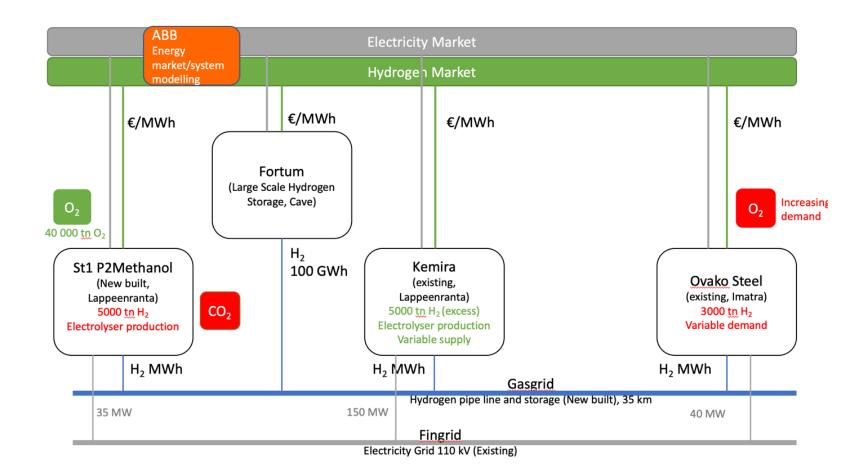
Thank you!

Petteri Laaksonen, D.Sc., Research Director

petteri.laaksonen@lut.fi

Renewable Energy in Finland

Competitive advantages for Finland in P2X


Large and sparsely populated country

>> Raw material availability

- Bio based CO₂ raw material (20+ MtCO2 annually), equals to 150 Mt MeOH & 15 BEUR/a revenue
- Cheap electricity compared to rest of the Europe
 - Very big potential for new production (wind and solar) and fast to ramp-up
- Educated people, good education system
- >>> Process industry heritage and skills
 - Steel
 - Chemical
 - Pulp and paper
- Robust infrastructure
 - Good reputation within investors Fast permitting processes (some exceptions)

SOUTH-EAST FINLAND HYDROGEN VALLEY EU-PROJECT

EU Large Hydrogen Valley

Finance for 20 MEUR, majority into industrial investments

P2X in Finland – some LUT research

- Carbon Negative Åland: Strategic Roadmap <u>https://lutpub.lut.fi/handle/10024</u> /163456
- Bothnian Bay Hydrogen Valley Research report <u>https://lutpub.lut.fi/handle/10024</u> /163667
- South-East Finland Hydrogen Valley – Research report <u>https://lutpub.lut.fi/handle/10024</u> /164642
- Feasibility Study for Industrial Pilot of Carbon-Neutral Fuel Production – P2X <u>https://lutpub.lut.fi/handle/10024</u> /162597

P2X TECHNOLOGIES

- >> Commercially available
- >> Technology Readiness Level 9

Technology	Supplier	Technology type	Reference
Electrolysis	Cummins	Alkaline, PEM	[21]
	Green Hydrogen Systems	Alkaline	[22]
	Hydrogen Pro	Alkaline	[23]
	ITM Power	PEM	[24]
	McPhy	Alkaline	[25]
	NEL Hydrogen	Alkaline, PEM	[26]
	Siemens	PEM	[27]
	Sunfire	Alkaline, SOEC	[28]
CO ₂ capture	Air Liquide Engineering & Construction	Cryogenic	[29]
	Aker Carbon Capture	Amine	[30]
	Carbon ReUse	Water	[31]
	GE Power	Amine, oxy-combustion	[32]
	Mitsubishi Heavy Industries	Amine	[33]
	Shell	Amine	[34]
	Toshiba Energy Systems & Solutions Corporation	Amine	[35]
MeOH synthesis	Air Liquide Engineering & Construction	Syngas/CO ₂ to MeOH	[29]
	BSE Engineering	n.a. ¹⁵	[36]
	Carbon Recycle International	CO ₂ to MeOH	[37]
	Johnson Matthey	Syngas to MeOH	[38]
	Mitsubishi Gas Chemical	Syngas to MeOH	[39]
Fuel synthesis	Chemieanlagenbau Chemnitz	MTG	[40]
	ExxonMobil	MTG	[41]
	Haldor Topsøe	MTG, syngas to gasoline	[42]
	Sunfire	Fischer-Tropsch	[28]

LUT University

P2X & Carbon Dioxide

oltaics, wind power, and batts

NAN-LAHDEN TEKNILLINEN YLIOPISTO LUT TA-LAHTI UNIVERSITY OF TECHNOLOGY LUT

UT School of Energy Sys UT School of Engineering Sci UT School of Business and M

Journal of Cleaner Production 373 (2022) 133920 Contents lists available at ScienceDirect Journal of Cleaner Production Global demand analysis for carbon dioxide as raw material from key

industrial sources and direct air capture to produce renewable electricity-based fuels and chemicals Tansu Galimova", Manish Ram, Dmitrii Bogdanov, Mahdi Fasihi, Siavash Khalili,

Ashish Gulagi, Hannu Karjunen, Theophilus Nii Odai Mensah, Christian Breyer LUT University, Yaspistenkatu 34, Lappenvanta, Pinland

ARTICLEINFO Handling Biltor: Zhifu Mi

ABSTRACT

Defousilization of the survent fouril fasts dominated global energy system is one of the key goals in the upon decades to mitigate elimate change. Sharp reduction in the costs of solar photovoltaies, wind power, and by technologies easilies a rapid transition of the power and some segments of the transport sectors to custainable energy resources. However, reservable electricity-based fiels and chemicals are required for the defourlimation o stially supply 2.1 sizatonnes of carbon dioxide and thus meet the majority of the demand in the 2030s. By capture is expected to supply the majority of the demand, contributing 3.8 gigs

1. Introduction	United Stat
Classes charge is one of the present there that humanity in forng sources that have humaning of any graves mapper tangks the source of the source of the source of the source of the biolenvery many one dense (radius et al., 2017). This is not soligons the global commany to limit the double average sumparators rise to well below 1.5° Composed to the source of the source of the dense of the source of the source of the source of the source of the source of the space parameters are been source of the source of the source of the space parameters are been source of the dense of the space parameters are been source of the source of the source of the space parameters are been source of the dense of the space parameters are been source of the source of the source of the source of the source of the source of the dense of the source of the source of the source of the dense of the source of the source of the source of the dense of the source of the source of the source of the dense of the source of the source of the source of the dense of the source of the source of the source of the source of the dense of the source of the source of the source of the source of the dense of the source of the source of the source of the source of the dense of the source of the source of the source of the source of the dense of the source of the source of the source of the source of the dense of the source of	United State (REN21, 2) systems gre (Jäger-Wal annual gro The pow rapid ramp capacities a them were foosil fuel-b increasing! Moreover, 1 electrificati renewables vehicles (E) is utilized i
Guardian, 2021), cities (Bringsault et al., 2016), and corporations (REN 21, 2020) set their own sustainability and zero emission goals.	face challes

ived 21 Ech 59.6525/C 2022 The Authors LAPPEENRANTA-LAHTI UNIVERSITY OF TECHNOLOGY LUT LUT School of Energy Systems Energy Technology

Joonas Hyvärinen

TECHNO-ECONOMIC EVALUATION OF CARBON CAPTURE TECHNOLOGIES INTEGRATED TO FLEXIBLE RENEWABLE ENERGY SYSTEM

Katja Kuparinen

TRANSFORMING THE CHEMICAL PULP INDUSTRY -FROM AN EMITTER TO A SOURCE OF NEGATIVE CO, EMISSIONS

ACTA UNIVERSITATIS LAPPEENRANTAENSIS 870

Hannu Karjunen

ANALYSIS AND DESIGN OF CARBON DIOXIDE UTILIZATION SYSTEMS AND INFRASTRUCTURES

ACTA UNIVERSITATIS LAPPEENRANTAENSIS 1048

https://www.sciencedirect.com/science/article/pii/S0959652622034928

https://lutpub.lut.fi/handle/10024/164753 https://lutpub.lut.fi/handle/10024/162597

https://lutpub.lut.fi/handle/10024/160058 https://lutpub.lut.fi/handle/10024/160057

D.Sc. (Tech.) Tero Tynjälä M.Sc. (Tech.) Hannu Kariuner